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Abstract 
A secure and efficient cryptosystem can be constructed through three primary 

methods, the discrete logarithm system (e.g. DSA), the integer factorization system 
(e.g. RSA), and the elliptic curve cryptosystem (ECC) [1][2]. This paper employs the 
elliptic curve cryptosystem method. The elliptic curve cryptosystem has low 
computational amount and short key size, both of which benefit a cryptosystem in 
limited-hardware environment with reduced overheads. The ECC provides a suitable 
environment for the cryptosystems. 

This study presents a new elliptic curve undeniable signature scheme, which is 
an improved design of the undeniable group signature scheme. The proposed scheme 
is based on the ECC. Complex parameters have been simplified to reduce time 
complexity. Hence, the proposed scheme is simpler than the undeniable group 
signature scheme yet more efficient and more secure. 
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1. Introduction 
The elliptic curve theory was proposed in 1985 by Koblitz [1] and Miller [2].  

The theory has since then been widely applied to various cryptosystems. The ECC 
equips cryptosystems with tight security through its difficult to solve elliptic curve 
discrete logarithm problem (ECDLP) [2, 3 and 4]. Unlike the integer factorization 
algorithm and the discrete logarithm problem, the ECDLP is extremely difficult and 
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time consuming to solve. There exists no efficient solution to this problem. Moreover, 
The ECC consumes a much smaller bit size yet provides a security equal to that 
provided by the RSA or DSA.   

 

The elliptic curve cryptosystem (ECC) was applied to improve the undeniable 
signature scheme by Lin and Wu [5, 6]. Lin [7] later employed the ECC on the 
undeniable signature scheme by Chaum [8] to produce an elliptic-curve undeniable 
signature scheme. The ECC is also applied to the group-oriented undeniable signature 
scheme by Harn and Yang [9]. This paper proposes to improve the above schemes 
through upgrading.  

This paper is divided into five sections. Section one introduces the proposal; 
section two introduces the elliptic curve cryptosystem; the proposal is detailed in 
section three; section four analyzes the security and efficiency of the proposed scheme; 
section five draws conclusions. 

 

2. An Introduction to the Elliptic Curve Cryptosystem 
The general equation for the elliptic curve is , pbaxxy mod32 ++= p is a 

natural prime number, and the value of should satisfy the discriminate 
. Only then could , be used as the 

decrypting elliptic curve [10]. 

,a b
pbaD mod0274 ≠+= 23 32 pbaxxy mod++=

Before we introduce the addition operation of the elliptic curve [4], we need to 
first introduce a special point O, known as the point of infinity and it satisfies the 
following properties:  

(1) If P, Q are two points on the elliptic curve, O is the point of infinity, then  
P＋O＝O+P=P.  

(2) O＝-O. 

(3) If Q is not equal to point (-P), then P＋Q＝O.  

(4) If P≠O, Q≠O, then P＋Q＝-R.  

According to the addition operation of the elliptic curve, if there are two points 
and),( 11 yxP = ),( 22 yxQ = on the elliptic curve, and if P≠-Q, then , ),( 33 yxQP =+

2
3 1 2 mod  x x x mλ= − − ， 3 1 3 1( ) mod  y x x y mλ= − − , where 
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If there is a point G on the elliptic curve, and this point is the base point, then the 
operation on nG has the following properties, 1G=G, 2G=G＋G, 3G=G＋G＋G=2G

＋G, ..., (n-1)G=G＋G+ ...＋G with a total of (n-1) G, nG=O, (n＋1)G=G. Thus the 
nG is n×G formal, meaning addition operations of the elliptic curve, and not the 
general multiplication operation, are continuously performed on n number of G’s.   

For example: A, B both have chosen to use the elliptic curve for 
communicating, taking 

632 ++= xxy
p  as 11, then , hence 

it is proved that the points on the elliptic curve are (2, 4), (2, 7), (3, 5), (3, 6), (5, 2), (5, 
9), (7, 2), (7, 9), (8, 3), (8, 8), (10, 2), (10, 9). If A, B both chose the point (2, 7) as G 
(Generator point), and performs the addition operation of the elliptic curve, then G=(2, 
7), 2G=G＋G=(5, 2), 3G=2G＋G=(8, 3), 4G=(10, 2), 5G=(3, 6), 6G=(7, 9), 7G=(7, 2), 
8G=(3, 5), 9G=(10, 9), 10G=(8, 8), 11G=(5, 9), 12G=(2, 4), 13G=O, 14G=(2, 7).  

011mod811mod274 23 ≠=+= baD

 

3. The Proposed Scheme 
Suppose that there are k≥2 users in a group, and every user of the group has a 

private key. The users are represented in the sequence of U1, U2, U3,…, Uk, and the 
proposed scheme is based on the same condition. 

3.1. Key Generation Phase 
In order to sign a message M∈[1, n-1], each user in the group generates his/her 

private key; using the private keys of all the users of the same group, the group public 
key is calculated as follows: 
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Step 1: Select an elliptic curve E defined over Zp. For security reasons, E should 
be divisible by a large prime number. 

Step 2: Select a base point G∈E(Zp) whose order must be a large prime number, 
defined as n. 

Step 3: Each user in the group selects a random integer di∈[1, n-1] as his/her 
private key, in which i = 1, 2, 3, …, k. 

Step 4: Let Q1 = d1×G, then the group public key Q can be calculated as follows 
through the cooperation of all users. 

Q = Qk = dk×(Qk-1) = (d1d2d3...dk mod n)×G 

 

3.2. Commitment Phase 

Let Z1 = (d1M mod n)×Q, then the group undeniable signature Z can be 

calculated as follows through the cooperation of all users. Z=Zk=dk × (Zk-1)= 

(d1d2d3...dkM mod n)×Q = (X1, Y1). 

Afterwards, Z and M is sent to Bob for verification. 

3.3. Verification Phase 

Step 1: Bob selects two random integers a and b∈[1, n-1] and computes 

W = a×Z + b×Q = (X2, Y2), then sends W to Alice. 

Step 2: After receiving W, let R1 = (d1
-1 mod n)×W, then R can be calculated as 

follows through the cooperation of all users. 

R = Rk = dk
-1×(Rk-1) = (d1

-1d2
-1d3

-1…dk
-1 mod n)×W 

Step 3: According to R, Bob calculates 

R' = (aM mod n)×Q + b×G 

If R' = R, then the group undeniable signature Z and the message M is 
authentic. 
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Theorem 1. 

In the verification phase, if R' = R, the undeniable signature Z and the message M 
is authenticated. 

Proof: For brevity, let t = d1d2d3…dk, therefore 

Q = Qk =dk×(Qk-1) 

= (d1d2d3...dk mod n)×G = (t mod n)×G 

Z = Zk = dk×(Zk-1)  

= (d1d2d3…dkM mod n)×Q = (tM mod n)×Q 

R = Rk = dk
-1×(Rk-1) 

= (d1
-1d2

-1d3
-1…dk

-1 mod n)×W = (t-1 mod n)×W 

 = (t-1 mod n)×(a×Z + b×Q) 

 = (t-1 mod n)×{a×[(tM mod n)×Q] + b×[(t mod n)×G]} 

 = (t-1 mod n)×[(atM mod n)×Q + (bt mod n)×G] 

 = (aM mod n)×Q + b×G 

 = R' 

 

4. Performance an Analysis and Security Issue 

 
4.1. Performance analysis 

An analysis of the performance of the proposed scheme is presented in the 
subsection below.  The symbols are defined as follows: 
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TMUL : time required by modulus operation; 

TINV : time required by modulus inverse element operation; 

TADD : time required by the modular addition operation; 

TEC_MUL : time required by elliptic curve multiplication operation; 

kG is given in reference [10], where k is a random 160-bit integer and G∈E(Zp). E is 
an elliptic curve defined over Zp and p≈2160. The time complexity clearly presented in 
the following relationship: 

TEC_MUL ≈  29TMUL 

 TEC_ADD ≈  0.12TMUL 

Modulus addition and subtraction operation amount is negligible and thus omitted. 
 

Table 1 lists the algorithm and time complexity phase by phase for easier 
understanding of the efficiency of the proposed scheme. Table 1 also clearly illustrates 
significant improvement in system performance in terms of time complexity in the 
proposed scheme.  

 

4.2. Security Issue 
The solution to the ECDLP is based on the derivation of d in relation to the given 

G and Q as follows: 

Q = d ×G 

In the above equation, d ×G represents d successive additions of point G which 

is operated under the elliptic curve cryptosystem. Q is the point derived from d×G and 
the variance of Q depends on the value of d. Therefore an attacker, due to his inability 
to solve the ECDLP, shall fail to derive the private key and hence unable to forge 
signatures. 
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Table 1: Algorithm and time complexity of the proposed scheme 

Time Complexity 

Items 
Algorithm 

(k 2 users) ≥ Time 
Complexity 

Rough 
Estimation 

Private 
Key 

di 
(i = 1, 2, 3, …, k) 

Key 
Generation 

Public 
Key 

Q = Qk = dk×(Qk-1) =  

(d1d2d3…dk mod n)×G 

k TEC_MUL 29k TMUL

Commitment 
Z = Zk = dk×(Zk-1) =  

(d1d2d3…dkM mod n)×Q 

k TEC_MUL

+ TMUL
(29k+1) TMUL

W = a×Z + b×Q 

R = Rk = dk
-1×(Rk-1) =  

(d1
-1d2

-1d3
-1…dk

-1 mod n)×W
Verification 

R' = (aM mod n)×Q + b×G

(k+4)TEC_MUL 

+ TMUL 

+ 2 TEC_ADD 

29k TMUL 

+117.24TMUL

+ k TINV
+ k TINV

 

5. Conclusions 
The discrete logarithm system was induced into the elliptic curve cryptosystem 

(ECC) in Lin’s scheme. This induction served to improve the ECC. The proposed 
scheme served to improve efficiency and security of Lin’s scheme. 
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